Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Tipo de estudo
Intervalo de ano de publicação
1.
J Eukaryot Microbiol ; 70(5): e12976, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37029732

RESUMO

The bulk of knowledge on marine ciliates is from shallow and/or sunlit waters. We studied ciliate diversity and distribution across epi- and mesopelagic oceanic waters, using DNA metabarcoding and phylogeny-based metrics. We analyzed sequences of the 18S rRNA gene (V4 region) from 369 samples collected at 12 depths (0-1000 m) at the Bermuda Atlantic Time-series Study site of the Sargasso Sea (North Atlantic) monthly for 3 years. The comprehensive depth and temporal resolutions analyzed led to three main findings. First, there was a gradual but significant decrease in alpha-diversity (based on Faith's phylogenetic diversity index) from surface to 1000-m waters. Second, multivariate analyses of beta-diversity (based on UniFrac distances) indicate that ciliate assemblages change significantly from photic to aphotic waters, with a switch from Oligotrichea to Oligohymenophorea prevalence. Third, phylogenetic placement of sequence variants and clade-level correlations (EPA-ng and GAPPA algorithms) show Oligotrichea, Litostomatea, Prostomatea, and Phyllopharyngea as anti-correlated with depth, while Oligohymenophorea (especially Apostomatia) have a direct relationship with depth. Two enigmatic environmental clades include either prevalent variants widely distributed in aphotic layers (the Oligohymenophorea OLIGO5) or subclades differentially distributed in photic versus aphotic waters (the Discotrichidae NASSO1). These results settle contradictory relationships between ciliate alpha-diversity and depth reported before, suggest functional changes in ciliate assemblages from photic to aphotic waters (with the prevalence of algivory and mixotrophy vs. omnivory and parasitism, respectively), and indicate that contemporary taxon distributions in the vertical profile have been strongly influenced by evolutionary processes. Integration of DNA sequences with organismal data (microscopy, functional experiments) and development of databases that link these sources of information remain as major tasks to better understand ciliate diversity, ecological roles, and evolution in the ocean.


Assuntos
Alveolados , Cilióforos , Oligoimenóforos , Filogenia , Alveolados/genética , Cilióforos/genética , RNA Ribossômico 18S/genética , Oligoimenóforos/genética , Oceanos e Mares
2.
PLoS Pathog ; 19(4): e1010941, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-37115795

RESUMO

The encapsulated fungus Cryptococcus neoformans is the most common cause of fungal meningitis, with the highest rate of disease in patients with AIDS or immunosuppression. This microbe enters the human body via inhalation of infectious particles. C. neoformans capsular polysaccharide, in which the major component is glucuronoxylomannan (GXM), extensively accumulates in tissues and compromises host immune responses. C. neoformans travels from the lungs to the bloodstream and crosses to the brain via transcytosis, paracytosis, or inside of phagocytes using a "Trojan horse" mechanism. The fungus causes life-threatening meningoencephalitis with high mortality rates. Hence, we investigated the impact of intranasal exogenous GXM administration on C. neoformans infection in C57BL/6 mice. GXM enhances cryptococcal pulmonary infection and facilitates fungal systemic dissemination and brain invasion. Pre-challenge of GXM results in detection of the polysaccharide in lungs, serum, and surprisingly brain, the latter likely reached through the nasal cavity. GXM significantly alters endothelial cell tight junction protein expression in vivo, suggesting significant implications for the C. neoformans mechanisms of brain invasion. Using a microtiter transwell system, we showed that GXM disrupts the trans-endothelial electrical resistance, weakening human brain endothelial cell monolayers co-cultured with pericytes, supportive cells of blood vessels/capillaries found in the blood-brain barrier (BBB) to promote C. neoformans BBB penetration. Our findings should be considered in the development of therapeutics to combat the devastating complications of cryptococcosis that results in an estimated ~200,000 deaths worldwide each year.


Assuntos
Criptococose , Cryptococcus neoformans , Meningite Criptocócica , Animais , Camundongos , Humanos , Cryptococcus neoformans/metabolismo , Roedores , Camundongos Endogâmicos C57BL , Criptococose/microbiologia , Polissacarídeos/metabolismo , Pulmão/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...